

ANC Fine-Tuning The Swedish Example

Thord Karlsson Swedish Board of Agriculture thord.karlsson@jordbruksverket.se

After defining natural constraints by bio-physical criteria...

Fine-tuning:

- Evidence of economic loss
- Proof that investments have not overcome natural constraints
- Use an indicator linked to to the natural constraint

Background – Sweden

Institutions: Ministry of Enterprise and Innovation – Decision Board of Agriculture – Basic data and Analysis

Delimitation: bio-physical criteria (temperature sum)

Administrative unit: parish (approximately 2 400 in Sweden)

Land area: 450 000 km² Agricultural land: 3 M hectare (6,7% of total land)

Legeno Mountain areas >≈1 500 degree days Delimited as areas with significant natural constraints (< 1 500 degree days)

Alternatives for fine-tuning

<u>Criteria</u>:

Low temperature

Fine-tuning approachStandard outputTree densityLivestock densityGreen housesAverage yieldNormal land productivtyFarming systemProduction method

Average yield

Each parish and crop:

- standard yield per hectare x crop area
- Total yield by total crop area → a mean yield level for the parish
- < 80% of average yield for areas outside mountain areas = Areas with Natural Constraints

13 a	rable crops	Yield weight	
_	Winter wheat		1
-	Spring wheat		1
_	Winter rye		1
_	Spring barley		1
_	Oats		1
_	Mixed grain (=	oats)	1
_	Winter rape		2
_	Spring rape		2
_	Winter turnip r	ape	2
_	Spring turnip r	ape	2
_	Sugar beet		0.14
_	Starch potatoe	s	0.17
_	Ware potatoes	5	0.15

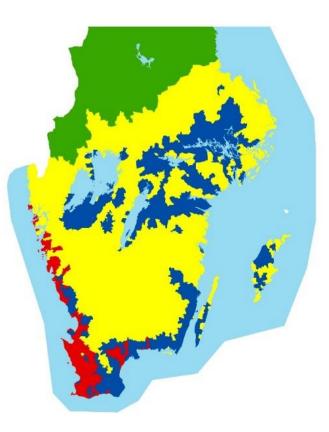
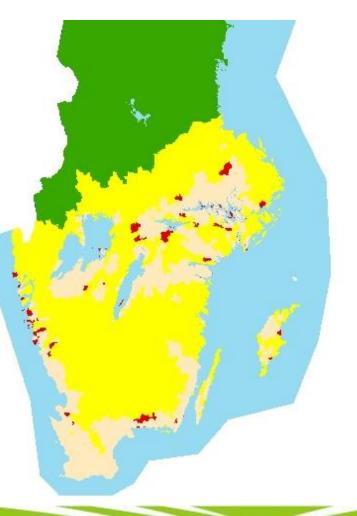

Result, fine-tuning natural constraints

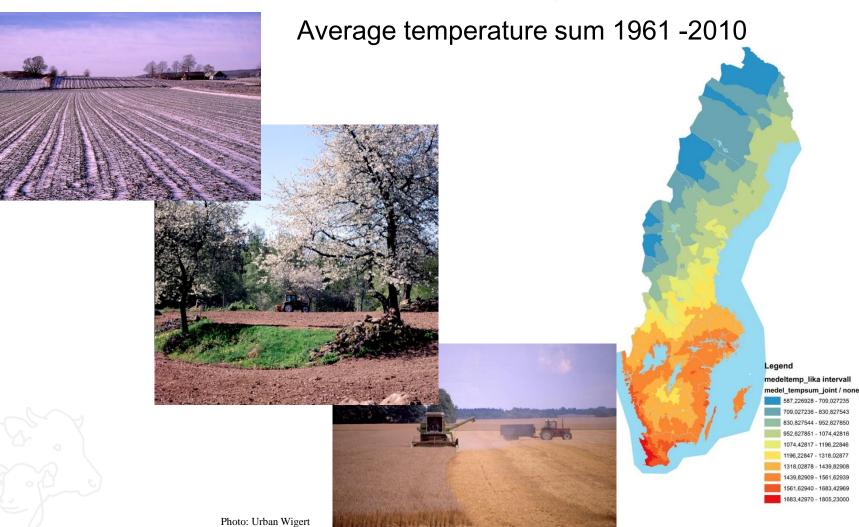
Photo: Urban Wigert



Results, fine-tuning specific constraints

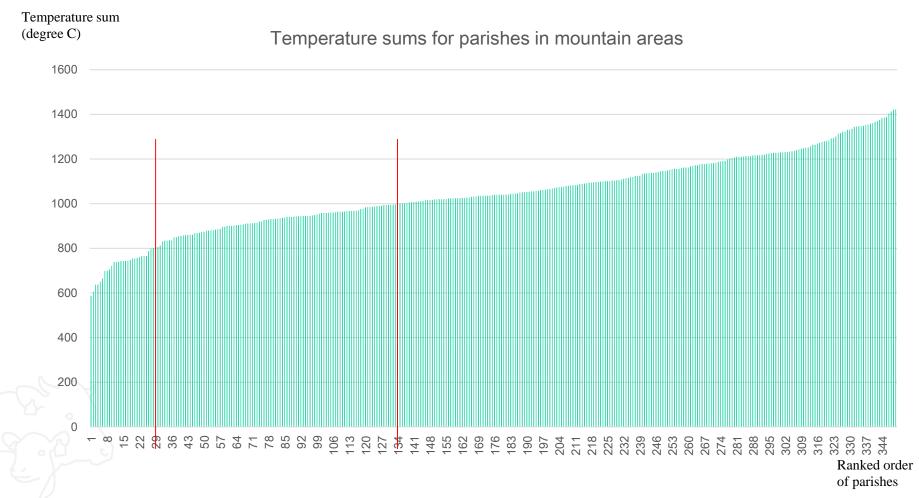
- Coastal areas
- Islands without permanent bridge
- High proportion of grazing land

and an average yield less than 80% of the area outside mountain area

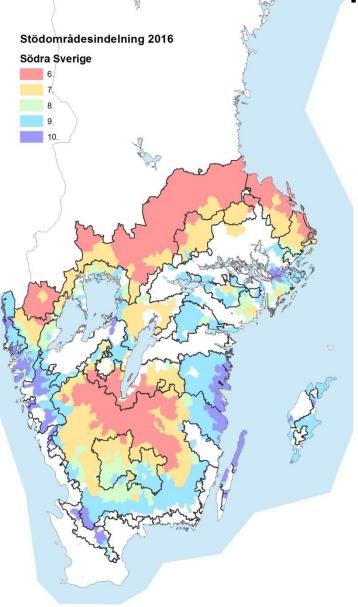


Results, ANC areas

	Agricultural land, hectare	Proportion of agricultural land
Mountian area	337 000	11%
Areas with natural constraints	1 165 000	37%
Areas with specific constraints	41 000	1%
Areas outside ANC	1 593 000	
Total	3 135 000	100%



Zoning



A continuous temperature span, no clear breaking points

Non-contiguous support zones

> Support zones in areas with natural constraints

2016-10-19

Issues

- I. The process
- 1. Bio-physical critera: Temperature sums
- 2. Fine-tuning: Yield
- 3. Zoning: temperature sums

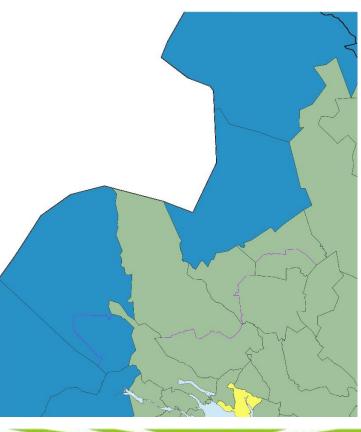
Which critera can be combined in the delimitation/finetuning/zoning process?

Not only temperature affect regional differences in outcome. Structure (small and scattered fields is another important factor.

If fine-tuning by using standard output/gross margin, is it then possible to use yield per hectare for zoning?

Standard output/gross margin for both steps?

Issues


Smallest unit is parish Before <u>part</u> of parish

Many parishes used to be divided into

- valley mountain
- plain forested areas.

Removing partial parishes results in less accuracy for the support.

Thank you!