

Technological developments for water resource efficiency

Tim Hess & Jerry Knox

13 June 2017, Brussels, Belgium

www.cranfield.ac.uk

Water for irrigation in the EU

- 24% of total water abstraction in Europe is used for agriculture (but ranges from 0 – 80%)
- Over-abstraction affects 10% of surface and 20% of groundwater bodies
- The most vulnerable areas are in the Mediterranean region
- Around 20 river basin districts face water stress during the summer
 - especially IT, ES, CY, MT
 - but also DE, UK, BE, PT, BG
- Climate change will increase irrigation needs and reduce water availability

Where does the water go?

Scope for water savings

System	
 Improvement of irrigation systems 	
 Decreasing soil evaporation 	
 Reducing runoff 	
 Reduction of evaporation during storage 	
 Management 	
 Irrigation scheduling 	
 Deficit irrigation strategies 	
 Water table management 	
Cropping	
 Changing planting date 	
 Crop selection 	

Reducing nonproductive "losses"

Reducing productive water use

Switching irrigation technology

- Surface irrigation (often inefficient) dominates in places like Bulgaria, Croatia, Italy, Portugal and is important in Greece and Spain
- Sprinkler or localised has the potential to be more efficient

Precision irrigation

Water demand

0%

25%

50%

100%

Real-time soil moisture monitoring using a wireless sensor network

Real-time precision irrigation

Warning #1: Water / energy trade-offs

Warning #1: Water / energy trade-offs

Irrigation modernisation in Spain

- In 2002, the Spanish government implemented a national plan to modernize irrigation infrastructure
 - Allocated gravity distribution → on-demand pressurised systems
 - 2 mil ha
 - €7,400 mil
- Effects
 - Energy demand / ha has increased +657%
 - Energy costs (per kWh) have also increased
 - Increased cost of watering drives a move to more water intensive crops (higher € per m³) and greater evapotranspiration

Warning #2: "Real" water losses

Water efficiency and water saving

- Most losses are returned to the environment and therefore available for other uses
- Water productivity (kg/m³) at the farm level increases
 - Encourages expansion of irrigation area to use available water
 - Does not reduce water use
- Few document studies of irrigation modernisation, but most showed no water savings
- Water use reduction requires good governance and water stewardship

Multi-level working Example: Berry production in Huelva, Spain

Farm level

- 1. Scheduling tool
- 2. Grower workshops
- 3. Publications
- 4. Social media

Coca:Cola

Estimated water saving = 2,300 MI/year

innocent

Basin level

1. Working with local government to manage water allocations

SA